
  



  

Extrinsic and Intrinsic Defects in MgO and CaO 
as Potential Spin-Qubit Candidates

Christian Vorwerk1, Nan Sheng2, Marco Govoni3, and Giulia Galli1,3

1 Pritzker School of Molecular Engineering, University of Chicago.
2 Department of Chemistry, University of Chicago, Chicago.

3 Materials Science Division and Center for Molecular Engineering, 
Argonne National Laboratory.



  

Estimated spin coherence time T
2

MgO and CaO as Qubit Host Materials: Excellent Spin Coherence Time

S. Kanai et al., preprint arXiv:2102.02986 (2021).



  

Estimated spin coherence time T
2

MgO and CaO as Qubit Host Materials: Excellent Spin Coherence Time

S. Kanai et al., preprint arXiv:2102.02986 (2021).



  

What are suitable defects in MgO and CaO ?
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● Quantum Espresso Calculations
● Γ-centered 2x2x2 supercell
● SG15 ONCV pseudo-potentials
● PBE functional



  

Intrinsic Point Defects

Oxygen Vacancy

● S=0 groundstate
● No excitations 

within band gap



  

Intrinsic Defects in MgO

Oxygen Vacancy Magnesium/Calcium Vacancy

● S=0 groundstate
● No excitations 

within band gap

● S=1 groundstate
● No unoccupied defect orbital
● Only ionization possible
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Transition-Metal Defects: Absorption Energies (Zero-phonon Lines)



  

Transition-Metal Defects: Radiative Lifetimes

Decreasing lifetime with increasing 
Z and decreasing band gap

Radiative rate:



  

Exctrinsic Defects: Lanthanide Defects
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Localized 4f orbitals not well described within DFT → DFT+U yields corrections

● 4f-5d energy difference increases 
with increasing U

● Position of 5d orbitals unchanged
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H. Ma et al., J. Chem. Theory Comput. 17, 4, 2116 (2021).



  

Cerium Defect: Excitations and Matrix Elements
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Thank you for your attention!
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