

ARGONNE NATIONAL LABORATORY

GREEN'S FUNCTION FORMULATION OF QUANTUM DEFECT EMBEDDING THEORY

MARCO GOVONI^{1,2,3}, CHRISTIAN VORWERK¹, NAN SHENG¹, BENCHEN HUANG¹, VICTOR YU², GIULIA GALLI^{2,3}

¹University of Modena and Reggio Emilia ²University of Chicago ³Argonne National Laboratory

APS March Meeting 2023, Las Vegas Session A60: Quantum Embedding: Materials and Methods for Materials 03/06/2023

SPIN DEFECTS AS MOLECULAR SYSTEMS

- Optically active spin defects in semiconductors are interesting platforms for the development of solid-state quantum technologies
 - two-level system
 - optical read-out
 - wide temperature range operation
 - compatible with semiconductor technology

NV- in diamond

NEUTRAL EXCITATIONS IN EMBEDDED SYSTEMS

QUANTUM DEFECT EMBEDDING THEORY (QDET)

4

DEFINE ACTIVE SPACE

Active space = { $\psi_n^{KS} | f_n = \int_{V \in \Omega} |\psi_n^{KS}(r)|^2 dr$ > Threshold }

Converged excitation energies with a 5% threshold \rightarrow (120,22e) active space

DEFINE EFFECTIVE HAMILTONIAN

Describe excitations within the active space at the FCI level of theory (high), starting from a description of the whole system at the level of DFT (low)

Necessary to remove any **double counting** terms arising from the separation of the whole system into active space + environment

EFFECTIVE TWO-BODY TERM

The particles of the active space are subject to an effective interaction, screened by the other particles

 v^{eff} effective Coulomb

 $W^{-1} = v^{-1} - P^R - P^A$ $\begin{bmatrix} v^{eff} \end{bmatrix}^{-1}$

 v^{eff} includes excitations that involve states that are NOT part of the active space

Aryasetiawan, Imada, Georges, Kotliar, Biermann, Lichtenstein, Phys. Rev. B 70, 195104 (2004)

Interactions that are **doubly counted (dc)**:

- Hartree: already described by DFT
- Exchange & correlation: to be removed from DFT

$$\Sigma^{dc} = \Sigma_{H}^{high} + \left(\Sigma_{XC}^{low}\right)_{A}$$

 $\Sigma_{H}^{high} = v^{eff} \rho^{A}$

 $(\Sigma_{XC}^{low})_A = ?$ While ρ and G are easily separable, $v_{xc}[\rho]$ is NOT

Interactions that are **doubly counted (dc)**:

- Hartree: already described by DFT
- Exchange & correlation: to be removed from DFT

$$\Sigma^{dc} = \Sigma_{H}^{high} + \left(\Sigma_{XC}^{low}\right)_{A}$$

 $\Sigma_{H}^{high} = v^{eff} \rho^{A}$

 $\left(\Sigma_{XC}^{low}\right)_A = iG^A W$

DFT+GW as "low" level of theory allows us to define a robust dc scheme

GREEN'S FUNCTION EMBEDDING FORMALISM

Exchange

& correlation

 An effective Hamiltonian allows us to treat correlation using two levels of theory

$$H^{\text{eff}} = \sum_{ij}^{A} t_{ij}^{\text{eff}} a_i^{\dagger} a_j + \frac{1}{2} \sum_{ijkl}^{A} v_{ijkl}^{\text{eff}} a_i^{\dagger} a_j^{\dagger} a_l a_k$$

Sheng, Vorwerk, Govoni, Galli, J. Chem. Theory Comput. 18, 3512 (2022)

double-counting $t_{ij}^{dc} = [V_{xc}]_{ij} + \sum_{w}^{A} [v^{eff}]_{ikjl} \rho_{kl}^{A} - [iG^{R}W]_{ij}$

Hartree

DFT

Sheng, Vorwerk, Govoni, Huang, Galli, Nature Comput. Sci. 2, 424 (2022)

GREEN'S FUNCTION EMBEDDING FORMALISM

NV CENTER IN DIAMOND

 Results obtained using the exact double counting (DFT+G₀W₀) correction are closer to the experimental values than those computed using a Hartree–Fock double counting (HF dc @ DFT) correction

reference/electronic states	^{1}E	${}^{1}A_{1}$	^{3}E
Exp ⁵⁶			2.18
Exp ZPL ^{56–58,69,70}	0.34-0.43	1.51-1.60	1.945
QDET $(DFT+G_0W_0)$	0.463	1.270	2.152
QDET (HF dc @ DFT)	0.375	1.150	1.324

Sheng, Vorwerk, Govoni, Galli, J. Chem. Theory Comput. 18, 3512 (2022)

NV CENTER IN DIAMOND

Contribution of Slater determinants to the many body wavefunction

T46.00011 : First-principles studies of point defects in semiconductors using time-dependent density

functional theory

(Yu Jin)

CLASSICAL/QUANTUM PROTOCOL FOR COMPUTATIONAL SPECTROSCOPY

CLASSICAL/QUANTUM PROTOCOL FOR COMPUTATIONAL SPECTROSCOPY

ENERG

QPU

QDET ON QUANTUM COMPUTERS

B70.00006 : Quantum simulations of Fermionic Hamiltonians with efficient encoding and ansatz schemes (Benchen Huang)

CONCLUSIONS

 Presented quantum embedded simulations of FCI in DFT, applied to spin-defects in semiconductors

- DFT+GW is required as starting point for QDET to define a robust double counting removal scheme and obtain accurate results
- Within QDET, pre-exascale computing is used to obtain the parameters of the effective Hamiltonian that describes the active space, quantum computing can be used to solve FCI

ACKNOWLEDGMENTS

- Computational facilities used:
 - ALCF-Theta, NERSC-Perlmutter
 - OLCF-Summit
 - IBM Quantum Experience
- Allocations:
 - INCITE, ALCC, NERSC-NESAP
 - IBM Quantum Hub, NERSC-QIS

http://miccom-center.org

Thank you!

THANK YOU

ARGONNE NATIONAL LABORATORY