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Strongly-correlated states in spin defects as qubits

Spin defects Many-body spectrum
-1 E ip A Strongly-correlated states: relevant for
"""""""" - quantum information science, yet
lllll E challenging for mean-field theories,
-~ et y e.g. DFT

Quantum defect embedding theory (QDET) is a natural framework for this!

Ivady, Abrikosov & Gali, npj CM 4, 1, 1-13 (2018)

Ma, Govoni & Galli, npj CM 6, 1, 1-8 (2020)

Ma, Sheng, Govoni & Galli, JCTC 17(4), 2116-2125 (2021)
Sheng, Vorwerk, Govoni & Galli, arXiv:2105.04736 (2021)



Quantum defect embedding theory (QDET)

Partially screened Coulomb potential from

A: active space constrained random-phase approximation (cCRPA)
R: rest of the system oot — 7R
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Ma, Govoni & Galli, npj CM 6, 1, 1-8 (2020)

Ma, Sheng, Govoni & Galli, JCTC 17(4), 2116-2125 (2021)

Sheng, Vorwerk, Govoni & Galli, arXiv:2105.04736 (2021)
Sheng, Vorwerk, Govoni & Galli, in preparation (2022)



Exact double counting (within GoW,) for QDET

.....................................................................................................................................................................

Hartree-Fock double counting (HFDC)

A: active space ) )
R: rest of the system igde ~ R A R A
’ o g N > W ]z’k:jlpkl > W ]z'jk:lpkl;

C Hartree “Exchange”

....... * Inconsistent with underlying DFT

seff _ prKS _ » Uncontrollable errors
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_: . Exact double counting (EDC)
o, A .
......... >. tdc = [‘/;Cc]l] —+ Zkl [W()R]zk]lp;jl — []‘GORWO]?,]

DFT Hartree Exchange + Correlation

* Fully consistent with DFT+Gy W,
* No error introduced

Sheng, Vorwerk, Govoni & Galli, in preparation (2022) 4
Hirayama, Miyake & Imada, PRB 87, 195144 (2013)



QDET with exact double counting in practice

DFT calculation

Active space selection

o

Ly (¥55)

Localization function
= [yeq [¥KS ()" dx

Effective Hamiltonian

FCI calculation

QDET is scalable to large systems with hundreds of atoms!

Sheng, Vorwerk, Govoni & Galli, in preparation (2022)



NV- in diamond

Localization function
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e Localization (Ly) as a function of energy is weakly dependent on starting point (PBE or DDH)

e The active space is formed by KS orbitals with Ly, higher than a chosen threshold

e We find converged excitation energies with a 5% threshold - (26,14) active space

Sheng, Vorwerk, Govoni & Galli, in preparation (2022)



NV- in diamond

Convergence as a function of

localization threshold Vertical Excitation Energies (eV)
3.5 3
1aoE x PBE O DDH
3037 HFDC | HFDC EDC EDC | Exp
2.5 @PBE' | @DDH' | @PBE? | @DDH? | Ref
2 201 g | 0396 | 0476 | 0.459 | 0.484
= —
% 1.5 1A 1.211 1.376 1.305 1.399
c 1 1
1.0 sE | 1.395 | 1.921 | 2.023 | 2.093 | 2.18
0.5—; %3 T )
0.0 4 2 2 8 . :
= - - - - HFDC: Hartree-Fock based Double Counting corrections
80 70 20 10 5

Threshold (%) EDC: Exact Double Counting corrections

e Use of EDC yields results showing a negligible dependence on starting
point (PBE or DDH)

e Use of EDC yields results in closer agreement with experiments
1Ma, Sheng, Govoni & Galli, PCCP 22, 25522-25527 (2020)

2Sheng, Vorwerk, Govoni & Galli, in preparation (2022)
3 Davies & Hamer, Proc. R. Soc. London, Ser. A, 348, 285-298 (1976)



SiVY in diamond

Vertical Excitation Energies (eV)

HFDC | HFDC EDC EDC | Theo | o oo
@PBE' | @DDH' | @PBE2 | @DDH2 | Ref P

1E, 0.232 | 0.261 0.324 0.309 | 0.54

A 0.404 0.466 0.645 0.612 1.10

3E, 1.247 1.590 2.011 1.899 | 2.16 | 1.31 (ZPL)

HFDC: Hartree-Fock based Double
Counting corrections

EDC: Exact Double Counting
corrections

Use of EDC with 5% threshold [ active space (78,40)] yields results showing a negligible

dependence on starting point (PBE or DDH) & consistent with other embedding theories*

The difference between theoretical and experimental results (zero phonon line, ZPL) may

be due to dynamical Jahn-Teller effects, neglected in theoretical studies

"Ma, Sheng, Govoni & Galli, PCCP 22, 25522-25527 (2020)

2Sheng, Vorwerk, Govoni & Galli, in preparation (2022)
4 Mitra, Pham, Pandharkar, Hermes & Gagliardi, JPCL 12, 11688-11694 (2021)

3Green et al., PRB 99, 161112 (2019)



Conclusions

e We derived and implemented an exact double counting correction to the Quantum Defect
Embedding theory (QDET), which is diagrammatically exact within GoW,, making QDET a
robust scheme for the calculations of strongly correlated states of defects

e We showed that a DFT+G,W, calculation is required as starting point for QDET to obtain
accurate results

e We applied QDET to spin defects in diamond and SiC

Future work

e Application of QDET to other spin defects

e Exploration of schemes beyond the GyoW, approximation
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Exact double counting for QDET

Hamiltonian description of the active region

- off o = [v! — (P~ B)] " (w=0)
H [teff, ’Ueff] Py = —1GoGo
Pic = —iGy' Gy

Hartree-Fock double counting (HFDC) Exact double counting (EDC)
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Ma, Sheng, Govoni & Galli, JCTC 17(4), 2116-2125 (2021) 1

Sheng, Vorwerk, Govoni & Galli, in preparation (2022)



Supercell convergence (NV- in diamond)

Localization function Convergence
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Sheng, Vorwerk, Govoni & Galli, in preparation (2022)



Supercell convergence (SiV° in diamond)
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Sheng, Vorwerk, Govoni & Galli, in preparation (2022)
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