Session Index

Session K46: Excited State II: Method development-quantum embedding and X-ray Spectroscopy

Focus

Sponsoring Units: DCOMP DMP Chair: Sahar Sharifzadeh, Boston University Room: McCormick Place W-470A Tuesday, March 15, 2022 K46.00001: Absorption Spectra of Solids from Periodic Equation-of-Motion Coupled-Cluster Theory 3:00PM - 3:36PM Invited Speaker: Xiao Wang Tuesday, March 15, 2022 K46.00002: Ground- and Excited-State energies of copper oxide molecules and anions from first principles via the Spin-3:36PM - 3:48PM Flip Bethe-Salpeter Equation approach Bradford A Barker, David A Strubbe Tuesday, March 15, 2022 K46.00003: Efficient Treatment of Molecular Excitations in the Liquid phase using stochastic many-body theory 3:48PM - 4:00PM Guorong Weng, Vojtech Vlcek Tuesday, March 15, 2022 K46.00004: An Exact Double Counting Scheme for Quantum Defect Embedding Theory 4:00PM - 4:12PM Nan Sheng, Christian W Vorwerk, Marco Govoni, Giulia Galli K46.00005: Benchmarking the Quantum Chemical Methods to Examine Ground and Excited States Electronic Structure Tuesday, March 15, 2022 4:12PM - 4:24PM of Diatomic Molecules Deepak K Rai, B. R. K. Nanda Tuesday, March 15, 2022 K46.00006: Model analysis of multiplet excitation of RE ions using QSGW 4:24PM - 4:36PM Katsuhiro Suzuki, Hirofumi Sakakibara, Takao Kotani, Kazunori Sato Tuesday, March 15, 2022 K46.00007: Transition from Lorentz to Fano Spectral Line Shapes in Non-Relativistic Quantum Electrodynamics 4:36PM - 4:48PM Davis M Welakuh, Prineha Narang Tuesday, March 15, 2022 K46.00008: Real-space Green's function approach for the Langreth cumulant 4:48PM - 5:00PM John Rehr. Joshua J Kas Tuesday, March 15, 2022 K46.00009: Resonant inelastic x-ray scattering beyond the guasiparticle approximation 5:00PM - 5:12PM Keith Gilmore, Joshua J Kas Tuesday, March 15, 2022 K46.00010: All-electron BSE@GW method for K-edge Core Electron Excitation Energy 5:12PM - 5:24PM Yi Yao, Dorothea Golze, Patrick Rinke, Volker Blum, Yosuke Kanai Tuesday, March 15, 2022 K46.00011: Combined Cumulant and Ligand Field Multiplet Theory approach to X-ray spectra 5:24PM - 5:36PM Joshua J Kas, John Rehr, Thomas P Devereaux Tuesday, March 15, 2022 K46.00012: Finite-temperature self-energy correction to XANES 5:36PM - 5:48PM Tun Sheng Tan, Joshua J Kas, John Rehr K46.00013: Predicting Core Electron Binding Energies in 1st Row Transition Metal Elements Using the Δ-Self-Tuesday, March 15, 2022 Consistent-Field Approach 5:48PM - 6:00PM

Juhan Matthias Kahk, Johannes C Lischner

Exact double counting for quantum defect embedding theory

Nan Sheng¹, Christian Vorwerk², Marco Govoni^{2,3} and Giulia Galli^{1,2,3}

¹Department of Chemistry, University of Chicago ²Pritzker School of Molecular Engineering, University of Chicago ³Materials Science Division, Argonne National Laboratory

PRITZKER SCHOOL OF MOLECULAR ENGINEERING

Strongly-correlated states in spin defects as qubits

Spin defects

Many-body spectrum

Strongly-correlated states: relevant for quantum information science, yet challenging for mean-field theories, e.g. DFT

Quantum defect embedding theory (QDET) is a natural framework for this!

Ivady, Abrikosov & Gali, *npj CM 4*, 1, 1-13 (2018) Ma, Govoni & Galli, *npj CM 6*, 1, 1-8 (2020) Ma, **Sheng**, Govoni & Galli, *JCTC 17*(4), 2116-2125 (2021) **Sheng**, Vorwerk, Govoni & Galli, *arXiv:2105.04736* (2021)

Quantum defect embedding theory (QDET)

Ma, Govoni & Galli, *npj CM 6,* 1, 1-8 (2020) Ma, **Sheng**, Govoni & Galli, *JCTC 17*(4), 2116-2125 (2021) **Sheng**, Vorwerk, Govoni & Galli, *arXiv:2105.04736* (2021) **Sheng**, Vorwerk, Govoni & Galli, *in preparation* (2022)

Exact double counting (within G_0W_0) for QDET

A: active space *R*: rest of the system

 $t^{\rm eff} = H^{\rm KS} - t^{\rm dc}$

Hartree-Fock double counting (HFDC) • $t_{ij}^{\mathrm{dc}} \approx \sum_{kl}^{A} \left[W_{0}^{R} \right]_{ikjl} \rho_{kl}^{A} - \sum_{kl}^{A} \left[W_{0}^{R} \right]_{ijkl} \rho_{kl}^{A}$ Hartree "Exchange" Inconsistent with underlying DFT Uncontrollable errors Exact double counting (EDC) $t_{ij}^{
m dc} = \left[V_{
m xc}
ight]_{ij} + \sum_{kl}^{A} \left[W_{0}^{R}
ight]_{ikjl}
ho_{kl}^{A} - \left[{
m i}G_{0}^{R}W_{0}
ight]_{ij}$ DFT Hartree Exchange + Correlation Fully consistent with DFT+ G_0W_0 No error introduced

Sheng, Vorwerk, Govoni & Galli, *in preparation* (2022) Hirayama, Miyake & Imada, *PRB* 87, 195144 (2013)

QDET with exact double counting in practice

DFT calculation Active space selection Effective Hamiltonian FCI calculation \hat{H}^{eff} Localization function 🔀 pyscf QUANTUMESPRESSO $L_V(\psi_n^{ ext{KS}}) = \int_{V \subseteq \Omega} ig| \psi_n^{ ext{KS}}(\mathbf{x}) ig|^2 \mathrm{d}\mathbf{x}$

QDET is scalable to large systems with hundreds of atoms!

NV⁻ in diamond

- Localization (L_V) as a function of energy is weakly dependent on starting point (PBE or DDH)
- The active space is formed by KS orbitals with L_V higher than a chosen threshold
- We find converged excitation energies with a 5% threshold \rightarrow (26,14) active space

NV⁻ in diamond

Convergence as a function of localization threshold

Vertical Excitation Energies (eV)

	HFDC @PBE ¹	HFDC @DDH ¹	EDC @PBE ²	EDC @DDH ²	Exp Ref ³
1E	0.396	0.476	0.459	0.484	
¹ A ₁	1.211	1.376	1.305	1.399	
зЕ	1.395	1.921	2.023	2.093	2.18

HFDC: Hartree-Fock based Double Counting corrections

EDC: Exact **D**ouble Counting corrections

- Use of EDC yields results showing a negligible dependence on starting point (PBE or DDH)
- Use of EDC yields results in closer agreement with experiments

¹Ma, **Sheng**, Govoni & Galli, *PCCP* 22, 25522-25527 (2020) ²**Sheng**, Vorwerk, Govoni & Galli, *in preparation* (2022) ³Davies & Hamer, *Proc. R. Soc. London, Ser. A*, 348, 285–298 (1976)

SiV⁰ in diamond

	HFDC @PBE ¹	HFDC @DDH ¹	EDC @PBE ²	EDC @DDH ²	Theo Ref⁴	Exp Ref ³
${}^{1}E_{g}$	0.232	0.261	0.324	0.309	0.54	
¹ A _{1g}	0.404	0.466	0.645	0.612	1.10	
³ E _u	1.247	1.590	2.011	1.899	2.16	1.31 (ZPL)

Vertical Excitation Energies (eV)

HFDC: Hartree-Fock based Double Counting corrections EDC: Exact Double Counting corrections

- Use of EDC with 5% threshold [→ active space (78,40)] yields results showing a negligible dependence on starting point (PBE or DDH) & consistent with other embedding theories⁴
- The difference between theoretical and experimental results (zero phonon line, ZPL) may be due to dynamical Jahn-Teller effects, neglected in theoretical studies

¹ Ma, Sheng, Govoni & Galli, *PCCP 22*, 25522-25527 (2020)
² Sheng, Vorwerk, Govoni & Galli, *in preparation* (2022)
⁴ Mitra, Pham, Pandharkar, Hermes & Gagliardi, *JPCL 12*, 11688–11694 (2021)
³ Green et al., *PRB 99*, 161112 (2019)

Conclusions

- We derived and implemented an *exact* double counting correction to the Quantum Defect Embedding theory (QDET), which is diagrammatically exact within G₀W₀, making QDET a robust scheme for the calculations of strongly correlated states of defects
- We showed that a $DFT+G_0W_0$ calculation is required as starting point for QDET to obtain accurate results
- We applied QDET to spin defects in diamond and SiC

Future work

- Application of QDET to other spin defects
- Exploration of schemes beyond the G₀W₀ approximation

Acknowledgement

Galli Group

MICCo

Computing resources

Research Computing Center

Exact double counting for QDET

Hamiltonian description of the active region

$$\hat{egin{array}{c} {}^{\mathsf{E}} \end{array}} \hat{H}^{\mathrm{eff}}\left[t^{\mathrm{eff}},v^{\mathrm{eff}}
ight]$$

$$egin{aligned} v^{ ext{eff}} &= \left[v^{-1} - \left(P_0 - P_0^{ ext{dc}}
ight)
ight]^{-1} (\omega = 0) \ P_0 &= -i G_0 G_0 \ P_0^{ ext{dc}} &= -i G_0^\mathcal{A} G_0^\mathcal{A} \end{aligned}$$

Hartree-Fock double counting (HFDC)

Exact double counting (EDC)

$$t_{ij}^{ ext{eff}} = H_{ij}^{ ext{KS}} - \left(v_{ikjl}^{ ext{eff}} - v_{ijkl}^{ ext{eff}}
ight)
ho_{kl}$$

Ma.

$$egin{aligned} t^{ ext{eff}} &= g^{-1} - ig(\Sigma - \Sigma^{ ext{dc}}ig) \ \Sigma_{ij} &= v_{ikjl}
ho_{kl} + rac{1}{2} \Big[iG_0W_0(\epsilon^{ ext{KS}}_i) + iG_0W_0(\epsilon^{ ext{KS}}_j)\Big] \ \Sigma^{ ext{dc}}_{ij} &= v^{ ext{eff}}_{ikjl}
ho_{kl} + rac{1}{2} \Big[iG^\mathcal{A}_0W_0(\epsilon^{ ext{KS}}_i) + iG^\mathcal{A}_0W_0(\epsilon^{ ext{KS}}_j)\Big] \ \end{array}$$

Supercell convergence (NV⁻ in diamond)

Localization function

Convergence

Supercell convergence (SiV⁰ in diamond)

Localization function

Convergence

