

Introduction to Computational Quantum Systems

Nan Sheng

nansheng@stanford.edu

Seminar Series on Quantum Topics CCAM, The University of Chicago February 21, 2024

O Introduction to Computational Quantum Physics

Equations of motion

A quantum system of N-interacting particles is governed by

• wavefunction $|\psi(\mathbf{r}_1, \ldots, \mathbf{r}_N; t)\rangle$ (zero-temperature):

$$irac{\partial}{\partial t}\ket{\psi}=\hat{H}\ket{\psi}, \quad \int |\psi|^2 d{f r}=1 \qquad ext{(Schrödinger equation)}$$

with $|\psi\rangle$ we can compute expectation value $\langle \psi | \hat{O} | \psi \rangle$ such as energy $E = \langle \psi | \hat{H} | \psi \rangle$. Formally $|\psi(t)\rangle = e^{-i\hat{H}t} |\psi(0)\rangle$. If \hat{H} is time-independent $\longrightarrow \hat{H} |\psi\rangle = E |\psi\rangle$. **3** density matrix $\hat{\rho}(\mathbf{r}'_1, \dots, \mathbf{r}'_N; \mathbf{r}_1, \dots, \mathbf{r}_N; t)$ (finite-temperature):

$$i \frac{\partial}{\partial t} \hat{
ho} = [\hat{H}, \hat{
ho}], \quad \hat{
ho} \text{ is PSD}, \quad \mathsf{Tr}(\hat{
ho}) = 1 \qquad (\mathsf{Von Neumann equation}),$$

with $\hat{\rho}$ we can compute expectation value $\text{Tr}(\hat{\rho}\hat{O})$ such as energy $E = \text{Tr}(\hat{\rho}\hat{H})$.

Second quantization

Usually, $|\psi\rangle$ need to be

- Symmetric over \forall ($\mathbf{r}_i, \mathbf{r}_j$) (Bosons)
- Anti-symmetric over \forall (r_i, r_j) (Fermions)

Introducing Slater basis sets $\phi(\mathbf{r}_1, \dots, \mathbf{r}_N) = \frac{1}{\sqrt{N}} \sum_P (\pm)^P \phi_1(x_{P(1)}) \phi_2(x_{P(2)}) \cdots \phi_N(x_{P(N)})$, where $\{\phi_i\} \in L_2(\mathbb{R}^3)$ and $\int |\phi_i|^2 d\mathbf{r} = 1$.

Denote
$$\phi(\mathbf{r}_1, \dots, \mathbf{r}_N) := |\phi_1, \dots, \phi_N\rangle \equiv |n_{\phi_1}, n_{\phi_2}, \dots\rangle := \hat{c}^{\dagger}_{\phi_1} \hat{c}^{\dagger}_{\phi_2} \cdots \hat{c}^{\dagger}_{\phi_N} |\varnothing\rangle$$

 $\hat{c}^{\dagger}_{\phi_i}$ and \hat{c}_{ϕ_i} satisfy

- Commutation relation (Bosons)
- Anti-commutation relation (Fermions)

With this notation, we can also denote \hat{H} . In general:

$$\hat{H} = T_{ij}\hat{c}_i^{\dagger}\hat{c}_j + V_{ijkl}\hat{c}_i^{\dagger}\hat{c}_j^{\dagger}\hat{c}_l\hat{c}_k + \cdots$$

 \cdots includes higher order interactions and those between different particles

Quantum field theory and path integral

QFT is essentially quantum mechanics with infinite degrees of freedom!

• Real-time path integral (one-particle example)

•
$$|\psi(t)
angle=e^{-i\hat{H}t}\ket{\psi(0)}$$

- Time evolution operator: $\hat{U} = e^{-i\hat{H}t} = \left[e^{-i\hat{H}\Delta t}\right]^N$
- $\langle q_{\mathsf{f}}|\hat{U}|q_{\mathsf{i}}\rangle = \langle q_{\mathsf{f}}|e^{-i\hat{\tau}\Delta t}e^{-i\hat{V}\Delta t}\wedge e^{-i\hat{\tau}\Delta t}e^{-i\hat{V}\Delta t}\wedge \cdots \wedge e^{-i\hat{\tau}\Delta t}e^{-i\hat{V}\Delta t}|q_{\mathsf{i}}\rangle = \int_{q(0)=q_{\mathsf{i}}}^{q(t)=q_{\mathsf{f}}} Dq \ e^{i\int_{0}^{t}dt'L(q,\dot{q})}, \text{ where } L = T V$
- Imaginary-time path integral (one-particle example)
 - Density matrix $\langle q_{\rm f}|\hat{
 ho}|q_{\rm i}\rangle = \langle q_{\rm f}|e^{-eta\hat{H}}|q_{\rm i}\rangle = \int_{q(0)=q_{\rm i}}^{q(eta)=q_{\rm f}} Dq \ e^{-\int_{0}^{\beta} d\tau H(q,\dot{q})}$, where H = T + V
- The extreme path of the action gives classical mechanics!

How can QFT help us compute?

Define
$$\hat{
ho}_0 = e^{-eta \hat{T}}$$
. Then $\langle \hat{O}
angle = \mathsf{Tr}(\hat{
ho} \hat{O}) = \mathsf{Tr}(\hat{
ho}_0) rac{\mathsf{Tr}(\mathcal{T}\hat{
ho}_0 \hat{O} e^{-\int_0^eta d au \hat{V}})}{\mathsf{Tr}(\hat{
ho}_0)} = Z_0 \langle \hat{O} e^{-\int_0^eta d au \hat{V}}
angle_0$

- From Wick theorem, the above integral can be simplified to a series of Feynman diagrams, which can be further evaluated by $G_0 = \langle \hat{c}_i^{\dagger} \hat{c}_j \rangle_0$ (analytical expression exists).
- Approximations are ususally made when choosing specific Feynman diagrams for suitable physical applications.

Part I

Many-body Green's function methods

- Main target: one-particle Green's function $G_{ij} = -i \langle T[c_i c_j^{\dagger}] \rangle$ and self-energy $\Sigma = G_0^{-1} G^{-1}$. From G we can extract particle density, density matrix, and charge excitation energies. From Σ we can extract quasiparticle energies and quasiparticle lifetime.
- Both many-body perturbation theory (MBPT) and dynamical mean-field theory (DMFT) belong to many-body Green's function methods.
 - DMFT: local Feynman diagrams for strong-coupling systems
 - **@** MBPT: Feynman diagrams from perturbative expansions for weak-coupling systems

Many-body perturbation theory¹

Figure 1: Hedin's pentagon.

- Σ , $\Pi(P)$, W, Γ are introduced renormalized quantities from perturbation expansion.

$$G_0^{-1} = G^{-1} + \Sigma \text{ and } v^{-1} = W^{-1} + P \text{ are } Dyson equations.}$$

- **(**) If $\Gamma \approx 1 \longrightarrow$ random phase approximation
- $\textbf{ o } \Sigma \approx \textit{iGW} \longrightarrow \text{the } \textit{GW} \text{ approximation}$
- **o** Second order: Bethe-Salpeter equation

¹Richard M Martin, Lucia Reining, and David M Ceperley. *Interacting electrons*. Cambridge University Press, 2016.

Dynamical mean-field theory²

Figure 2: Graphic illustration of dynamical mean-field theory.

- **(**) Assume self-energy Σ is local in space (exact in infinite dimensions).
- **2** Hybridization function Δ represents the interaction between the site and the environment.

²Richard M Martin, Lucia Reining, and David M Ceperley. *Interacting electrons*. Cambridge University Press, 2016.

Variational methods

Low-lying (ground-state) wavefunction and energy from $H\psi = E\psi$ can be obtained from minimization problem: $E = \min_{|\psi\rangle} \langle \psi | \hat{H} | \psi \rangle - E(\langle \psi | \psi \rangle - 1)$

• Variational Monte Carlo:
$$\langle \hat{H} \rangle = \frac{\langle \psi(a) | \hat{H} | \psi(a) \rangle}{\langle \psi(a) | \psi(a) \rangle} = \int \left(\frac{|\psi(a)|^2}{\int |\psi(a)|^2} \right) \frac{\hat{H} |\psi(a) \rangle}{\psi(a)}$$

- Power method: $|\psi\rangle \propto \lim_{\beta \to \infty} e^{-\beta \hat{H}} |\psi_0\rangle$ and $\langle \hat{O} \rangle = \frac{\langle \psi_0 | \hat{O} | \psi \rangle}{\langle \psi_0 | \psi \rangle}$
 - Projector Quantum Monte Carlo, Auxiliary-field Quantum Monte Carlo etc
- Trucated Galerkin space: post-Hartree-Fock methods
- Density-matrix renormalization group (based on tensor-network ansatz)

Tensor-train representation

$$\psi(i_1, i_2, \dots, i_d) \approx \sum_{\alpha_1=1}^{r_1} \sum_{\alpha_2=1}^{r_2} \cdots \sum_{\alpha_{d-1}=1}^{r_{d-1}} G_1(i_1, \alpha_1) G_2(\alpha_1, i_2, \alpha_2) \cdots G_d(\alpha_{d-1}, i_d)$$
$$H(i_1, i'_1, i_2, i'_2, \dots, i_8, i'_8) \approx \sum_{\alpha_1=1}^{r_1} \sum_{\alpha_2=1}^{r_2} \cdots \sum_{\alpha_{d-1}=1}^{r_{d-1}} G_1(i_1, i'_1, \alpha_1) G_2(\alpha_1, i_2, i'_2, \alpha_2) \cdots G_d(\alpha_{d-1}, i_d, i'_d)$$

Figure 3: Tensor diagram for tensor-train/matrix product state (TT/MPS).

Figure 4: Tensor diagram for matrix product operator (MPO).

Tree tensor network

$$\psi(i_1, i_2, \dots, i_8) \approx \sum_{\alpha_1^1 \alpha_2^1 = 1}^{r_1} \sum_{\alpha_1^2 \alpha_2^2 \alpha_3^2 \alpha_4^2 = 1}^{r_2} G_1^0(\alpha_1^1, \alpha_2^1)$$

$$G_1^1(\alpha_1^1, \alpha_1^2, \alpha_2^2) G_2^1(\alpha_2^1, \alpha_3^2, \alpha_4^2)$$

$$G_1^2(\alpha_1^2, i_1, i_2) G_2^2(\alpha_2^2, i_3, i_4) G_3^2(\alpha_3^2, i_5, i_6) G_4^2(\alpha_4^2, i_7, i_8)$$

Figure 5: Tensor diagram for a 3-level binary tree tensor network (TTN).

Density-matrix renormalization group

$${\sf E} = \min_{\ket{\psi}}raket{\psi}\hat{H}\ket{\psi} - {\sf E}\left(raket{\psi}\psi
angle - 1
ight)$$

Express \hat{H} as a MPO and use an MPS ansatz for $|\psi\rangle$:

Figure 6: Graphic illustration of density-matrix renormalization group.

13/24

Density-matrix renormalization group

DMRG step 1:

- OMRG uses tensor network as ansatz.
- **2** DMRG is least squares method for local tensor cores rather than full space.
- OMRG is ideally linearly scaled in number of cores.

Full and selected configuration interaction

• Full configuration interaction (exact diagonalization)

$$H_{\rm el} = \begin{pmatrix} \langle \Phi_0 | \hat{H} | \Phi_0 \rangle & \langle \Phi_0 | \hat{H} | \Phi_a^r \rangle & \cdots \\ \langle \Phi_0 | \hat{H} | \Phi_a^r \rangle & \langle \Phi_a^r | \hat{H} | \Phi_a^r \rangle & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix} \xrightarrow{\rm Diagonalization} \Psi$$

• Selected configuration interaction Limit the space of Ψ to low order, such as

$$\begin{split} \Psi &\approx c_0 \Phi_0 + \sum_{ra} c_a^r \Phi_a^r \\ H_{\rm el} &\approx \begin{pmatrix} \langle \Phi_0 | \hat{H} | \Phi_0 \rangle & \langle \Phi_0 | \hat{H} | \Phi_a^r \rangle \\ \langle \Phi_0 | \hat{H} | \Phi_a^r \rangle & \langle \Phi_a^r | \hat{H} | \Phi_a^r \rangle \end{pmatrix} \qquad \stackrel{\rm Diagonalization}{\longrightarrow} \quad \Psi \end{split}$$

Quantum Monte Carlo

• Variational Monte Carlo

$$E(\alpha) = \frac{\langle \Psi(\alpha) | \hat{H} | \Psi(\alpha) \rangle}{\langle \Psi(\alpha) | \Psi(\alpha) \rangle} = \int \left(\frac{|\Psi(\alpha)|^2}{\int |\Psi(\alpha)|^2} \right) \frac{\hat{H} | \Psi(\alpha) \rangle}{\Psi(\alpha)}$$

$$E_{\min} = \min_{\alpha} E(\alpha)$$

• Projector Monte Carlo

$$\begin{array}{l} |\Psi\rangle \propto \lim_{\beta \to \infty} e^{-\beta \hat{H}} |\Phi\rangle \longrightarrow |\Psi^{n+1}\rangle = e^{-\Delta \tau H} |\Psi^{n}\rangle \\ E_{\min} = \lim_{n \to \infty} \frac{\langle \Phi | \hat{H} | \Psi \rangle}{\langle \Phi | \Psi \rangle} \end{array}$$

• Path integral Monte Carlo Sample over the path integral

Part I

Summary of computational methods for guantum physics

Introduction to Quantum Many-Body Systems

Quantum many-body systems

As noted previously, the key quantity of a quantum system is wavefunction $|\psi\rangle$ (zero-temperature) or density matrix $\hat{\rho}$ (finite-temperature).

If $|\psi\rangle$ and $\hat{\rho}$ can not be solved by separation of variables \longrightarrow strong correlations beyond mean-field theory (MFT)! Examples of MFT include Hartree-Fock, Kohn-Sham density functional theory, the *GW* method, Weiss mean-field theory etc.

Interpretation of strong correlations

Statistics perspective: correlation between two operators.

Wavefunction perspective: expansion of the exact wavefunction as an infinite series.

$$\langle \hat{A}(\mathbf{r}) \hat{B}(\mathbf{r}') \rangle \begin{cases} \approx \langle \hat{A}(\mathbf{r}) \rangle \langle \hat{B}(\mathbf{r}') \rangle : \mathsf{MFT} \text{ works} \\ \neq \langle \hat{A}(\mathbf{r}) \rangle \langle \hat{B}(\mathbf{r}') \rangle : \mathsf{MFT} \text{ fails!} \end{cases}$$

$$|\psi\rangle = c_0 |\phi_0\rangle + \sum_{ra} c_a^r |\phi_a^r\rangle + \sum_{\substack{a < b \\ r < s}} c_{ab}^{rs} |\phi_{ab}^{rs}\rangle + \cdots$$

Note
$$\langle \hat{O} \rangle \coloneqq \begin{cases} \langle \psi | \hat{O} | \psi \rangle : \text{ zero-temperature} \\ \frac{\operatorname{Tr}(\hat{O}e^{-\beta\hat{H}})}{\operatorname{Tr}(e^{-\beta\hat{H}})} : \text{ finite-temperature} \end{cases}$$

$$c_0 \begin{cases} \approx 1: \text{ MFT works} \\ \ll 1: \text{ MFT fails!} \end{cases}$$

Representative strongly correlated systems

Transverse-field Ising model: quantum phase transitions.

Note $\hat{\sigma}_x$ and $\hat{\sigma}_z$ are Pauli matrices.

$$\left|\frac{J}{g}\right| = \begin{cases} > 1: \text{ ordered phase} \\ = 1: \text{ quantum critical point } \longrightarrow \text{ strong correlations!} \\ < 1: \text{ disordered phase} \end{cases}$$

Representative strongly correlated systems

Fermi-Hubbard model (FHM): electron interactions in transition metal oxides.

Figure 8: A schematic Fermi-Hubbard model.

Representative strongly correlated systems

Spin defects and strongly-correlated states: emerging candidates for spin qubits in quantum information science.

Figure 9: Structure and spectrum of negatively charged nitrogen-vacancy center (NV^{-}) in diamond.

First-principles predictions of strongly correlated singlet-states are challenging!

Resources

- Dissertation and talk from Prof. Michael Lindsey at Berkeley³
- An introductory book by Prof. Lin Lin at Berkeley and Prof. Jianfeng Lu at Duke⁴
- A self-contained book of quantum many-body theory⁵

³Lindsey.

⁴lin2019mathematical.

⁵stefanucci2013nonequilibrium.